
NucleusRV
Release 0.1

Usman Zain

Jan 16, 2023

CONTENTS

1 Overview of NucleusRV 3

2 NucleusRV User Guide 5

3 NucleusRV Developer Guide 7
3.1 Instruction Fetch . 7

i

ii

NucleusRV, Release 0.1

Note: This project is under active development.

NucleusRV is a 32-bit 5 stage pipelined RISC-V core written in Chisel. It implements I base ISA, M multiply and
divide, and C compressed instructions (RV32IMC). NucleusRV has been taped out in Google’s sponsered OpenMPW-6
shuttle on SKY130nm process node.

The documentation is split into 3 sections.

The Overview section explores the features of NucleusRV from bird’s eye view.

The User Guide section provides information necessary to setup and run NucleusRV. It is aimed at software developers
writing software for NucleusRV.

The Developer Guide section gives detailed explanation of source code and different design decisions. It highlights
contribution guidelines and will be helpful for people making changes to NucleusRV

CONTENTS 1

NucleusRV, Release 0.1

2 CONTENTS

CHAPTER

ONE

OVERVIEW OF NUCLEUSRV

NucluesRV is an embedded 32 bit RISC-V core. It is written in Chisel and it implements base ISA I, compressed
instructions C, multipy and divsion instructions M and floating point unit F.

3

NucleusRV, Release 0.1

4 Chapter 1. Overview of NucleusRV

CHAPTER

TWO

NUCLEUSRV USER GUIDE

This user guide provides information necessary to setup and run NucluesRV. It is aimed at software developers writing
software for NucleusRV and hardware developers integrating NucleusRV into a design

5

NucleusRV, Release 0.1

6 Chapter 2. NucleusRV User Guide

CHAPTER

THREE

NUCLEUSRV DEVELOPER GUIDE

This section gives detailed explanation of the source code and different design decision. It describes contribution
guidelines and will be helpful for people making changes to NucleusRV code base.

3.1 Instruction Fetch

Fig. 1: Instruction Fetch (IF) stage

The Instruction Fetch (IF) stage fetches one instruction from the memory, increments the PC and supplys the instruction
to Instruction Decode (ID) stage. It serves one instruction per cycle.

The core supports misaligned instruction address by allowing the program counter to increment by 2. This happens
when a compressed instruction is encountered. The is_comp signal denotes that whehter we have received compressed
instruction.

We cannot pass misaligned address that we may have ended up with after incrementing the program counter by 2 and
thats where the Realigner module comes in. This module takes as input the instruction address (PC) and corresponding
instruction and make sures that instruction address (PC) is word aligned. The module operates as follows: If the address
is aligned, it is passed to instruction memory to fetch the instruction as is. If it is misaligned, the state machine performs
the following actions:

1. Store the upper half-word of current instruction, halt the PC for one cycle, and send the address to the next
instruction. Meanwhile, NOP will be fed to the core.

2. After one cycle, when the instruction arrives, the lower half-word of this instruction is concatenated with the
previously stored upper-half word. And this new instruction will be fed to the core.

The instruction is then passed to Compressed Decoder which decodes the 16 bit instruction instruction into its equivalent
32 bit instruction and also sets the is_comp flag. The next pc address is calculated on the basis of this flag, that is, it
increments by 2 if it is true and by 4 if false.

The calculations for jump and branch addresses are done in Instruction Decode stage and then passed to Instruction
fetch when the branch is taken.

7

	Overview of NucleusRV
	NucleusRV User Guide
	NucleusRV Developer Guide
	Instruction Fetch

